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Three-dimensional contact problems for an elastic layer with surface roughness are considered taking into account Coulomb 
friction in the previously unknown area of contact. It is assumed that the deformation of the microprotuberances of the elastic 
surface in contact with a rigid punch is non-linear (for example, it obeys a power law) [1, 2]. The solution of the problems is 
reduced to investigating non-linear Hammerstein integral equations, for which the existence and uniqueness of the solution is 
proved, and also the applicability of the method of successive approximations. Numerical results are presented which show the 
effect of the roughness and the friction force on the contact pressure, the dimensions of the contact area, and the relation between 
the indenting force and the indentation of the punch. © 2004 Elsevier Ltd. All rights reserved. 

The plane contact problem for a rough elastic solid was apparently investigated for the first time in [3] 
using a linear law of deformation of microprotuberances. However, a number of experimental 
investigations [4, 5] has shown that there is a power-law relation between the closeness of the contacting 
rough surfaces and the pressure. Using this relation investigations have been made [1, 2] of the plane 
and axisymmetric contact problems for the known contact area and ignoring friction forces, and 
references have been made to a number of previous investigations. The method of solving contact 
problems with an unknown contact area, used in this paper, was proposed in [6] for analysing the three- 
dimensional problem for a rough elastic half-space for a general non-linear law of deformation of the 
microprotuberances and ignoring friction forces. When proving the existence and uniqueness of the 
solution, the monotonicity of a certain non-linear integral operator was used in [6] as well as the conjug- 
acy of the linear integral operator generated by Green's function for a half-space. The corresponding 
proofs, given below, are not based on these properties, since the friction forces lead to non-self-conjugacy, 
and monotonicity breaks down for cases when the characteristic dimensions of the contact area are of 
the order of the layer thickness. Three-dimensional contact problems ignoring the roughness in quasi- 
static formulation in which the friction forces are taken into account as in this paper, only in the direction 
of motion of the punch, were considered previously in [7-9]. The method proposed in [6] is used in 
[8-10] to determine the unknown contact areas of elastic bodies of different shapes. Attempts have 
been made to investigate the contact of rough surfaces based on statistical and fractal approaches to 
describe the unknown distribution of the microprotuberances [11]. 

1. F O R M U L A T I O N  A N D  R E D U C T I O N  T O  A N O N - L I N E A R  
I N T E G R A L  E Q U A T I O N  

Consider an infinite layer {--~ < x , y  < ~ ,  0 <~ z <~ h}  with elastic parameters G (the shear modulus) 
and v (Poisson's ratio). We will investigate the quasi-static contact problem of a rigid punch, which is 
initially indented into the face z = h of the layer, and then begins to move slowly over this face (without 
sag) along thex axis (see Fig. 1). The lower facez = 0 of the layer is fixed (problem A) or is in conditions 
of sliding clamping (problem B). The punch has a smooth base, described by the function f(x, y), such 
that the unknown contact region g2 is elongated along they axis (in the sense of the ratio of the parallel 
x and y axes of the sides of the minimum rectangle containing f2). We can then neglect the Coulomb 
friction forces in the direction of they axis and only take into account the friction forces collinear with 
the direction of motion. Because of the smoothness of the base of the punch, the contact pressure should 
vanish on the boundary of the contact area 0K. The punch is acted upon by an normal force P, applied 
at a distance I d ] from the z axis, and a shear force T = gP, applied at a height e above the face z = 0 

CPlikl. Mat. Mekh. Vol. 68, No. 3, pp. 516-527, 2004. 

463 



464 V. M: Aleksandrov and D. A. Pozharskii 

z = h  

z = O  

P , tZ  

G,v 

Fig. 1 

of the layer, g is the Coulomb friction coefficient. If d < 0, the force P is applied along the negative x 
semiaxis. The problems are symmetrical about the y coordinate. When g > 0 the punch moves in the 
positive direction of the x axis, and when g < 0 it moves in the opposite direction. The unknown normal 
Contact pressure %=~q(x, y), (x, y) ~ f2 is related to the shear stress by Coulomb's law Zxz = -gq(x, y). 
The surface of the layer has microroughnesses as a result of processing, which, on contact with the punch, 
make an additional contribution u a to the normal displacement of the layer boundary, which is defined 
as follows: 

uaz = - ~ [ q ( x , y ) ]  (x,y) e ~ (1.1) 

where q~(t) ( -~  < t < ~ )  is a continuous (non-linear) function, strictly increasing when t > 0 and equal 
to zero when t ~< 0. When t > 0 an inverse function H[~(t)] = t exists for the function q~(t). 

This model for taking into account the roughness of the surface is widely used at the present time 
[1-6]. The model is employed when the density of the actual contact areas are fairly large. In applications, 
the function ~(t) is often approximated by a power function, which will not be done below. Note, in 
addition, that the height and density of the microroughnesses of the surface also affect the choice of 
the value of the friction coefficient g. This question remains open here and will be investigated later. 

The condition for contact between the bodies can be written in the form 

a 

Z = h: u z + u  z = - [ ~ ) - f ( x , y ) ]  (x,y) e (1.2) 

where g is the indentation of the punch. The normal displacement uz(x, y, z) must satisfy the three- 
dimensional Lam6 equations of equilibrium and the boundary conditions 

z = h:cY z = - q ( x , y ) ,  "Cxy = g6z, XYz = O, 

(Yz ---- T'xz ---- T'yz = 0,  (X, y)~  f~ 

Z = 0 :u  x = uy = u z = 0 (ProblemA) 

z = 0 :u  z = Zxz = Xy z = 0 (ProbiemB) 

(x, y) e f2 

(1.3) 

In addition, the stresses must disappear at infinity. 
The formulation of the contact problems is as follows. For specified functions f ix ,  y)  and ~(t) and 

the quantities G, v, g and fi it is required to determine the contact area ~,  the contact pressure q(x, y), 
the external forces P and T, and also their branches d and e. It is also possible to specify the force P, 
knowing the unknown indentation & 

Solving the boundary-value problems (1.3) using a double Fourier transformation, we obtain, in 
particular, the representation 

1 G (1.4) U z ( X ' y ' h ) -  2 0 I  K ( x - ~ ' y - T I ) q ( ~ ' q ) d f 2 ~ n '  0 = 1------~ 
f2 
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where 

K(t, ~) = Kl(t, Z) - eK2(t, "c), I - 2v 
~2 - 2v 

1 
Kn(t, "c) = ~-~ I f L*(~, ~)exp[- i (~ t  + ~'c)]do~d~, n = 1, 2 (1.5) 

L*(~,[3) = L,(T)/~t, L*(~,~) = i~L2('I)IT 2, V = ~ 2 + ~ 2  

The functions Ln(u) (n = 1, 2) have the form 

Ll(u ) = [2~:sh(2uh) - 4uhl/Lo(u ), L2(u ) = [2g:ch(2uh) - 4(1 - 2v) -l u2h 2 - 2r,]/Lo(u ) 
(1.6) 

Lo(u) = 2~ch(2uh)+4uZh2+l+ 2, ~ = 3 - 4 v  

for problem A, and 

Ll(u) = [ c h ( 2 u h ) - l l / L o ( u ) ,  Lz(u ) = [sh(2uh)-2(1-2v)-luhllLo(u) (1,7) 

Lo(u) = sh(2uh) + 2uh 

for problem B. 
Using integral 8.441.2 of [12] 

r~t2 

I c°s(ac°sz)c°s(bsinz)dz = 2 J°( 4~5a2 + b2) (1.8) 
o 

and the relation J~ (z) = -Jt(z), where Jn(u) (n = 0, 1) is the Bessel function, we reduce expression (1.5) 
to the form 

Kt(x -  ~, Y-~q) = ILl(u)Jo(uR)du 
0 

Kz(X_~ , y _ r l )  = ~ I L z ( u ) J I ( u R ) d  u (1.9) 

o 

R = J ( x - ~ ) 2 + ( y - r l )  2 

Taking into account the asymptotic behaviour: Ln(u) ---) 1 as u ---) +~, (n = 1, 2), and also integral 
6.511.1 from [12] 

1 
fJn(ue)du = ~, 
o 

n = 0, 1 (1.10) 

we isolate the principal terms in the kernels (1.9) 

1 I [L l (U)_  1]Jo(uR)du Kl(x- ,y-n) = 

0 
(1.11) 

X K 2 ( x - ~ , y - 1 ] )  : R 2 ~ + @ f [ L 2 ( u ) - I ] J 1 ( u R ) d .  
0 

Now substituting representations (1.1) and (1.4) into contact condition (1.2), we obtain the following 
non-linear integral equation in the contact pressure q(x, y) 
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• [q(x, y)] + 2--~IK(x  - ~, y - q)q(~, r l ) d ~ q  = 8 - f ( x ,  y), 
g2 

(x, y) • ~ (1.12) 

2. T H E  S O L U T I O N  OF EQ.  (1 .12)  

We will assume that the unknown contact area f2 is contained inside the rectangle S = {(x, y) : Ix I ~< a, 
ly[ ~< b } (b ~> a). The contact pressure must be positive inside £2 and equal to zero in the additional 
region S\f2. Suppose ~2 is an open set. Since the region S ~  is contact-free, the non-penetration condition 
uz(x, y, h) > 8 -f(x, y) is satisfied in it. Combining all these conditions and extending the integration in 
formula (1.12) to the rectangle S, we reduce the contact problems to the following relations 

¢P[q(M)] + 2-~0fK,(M, N ) q ( N ) d S  N = g ( M )  A q ( M )  > O, M • a 

S 

21{~IK(M, N)q(N)dS  N > g ( M )  A q ( M )  = O, M • ( S \ ~ )  

S 

(2.1) 

where we have used the notation 

M = (x,y) ,  N = (~,q) ,  g(M) = ~ ) - f ( M ) ,  K , ( M , N )  = X ( x - ~ , y L q )  (2.2) 

After determining the function q(x,y) and the region f2 from system (2.1), we can obtain the quantities 
P, d and e from the following three conditions of equilibrium of the punch (see formula (14) in [7]) 

fq(M)df2a4 = P, I x q ( M ) d ~ M  = Pd, e - h  = - d  (2.3) 
f~ fa P" 

System (2.1) can be reduced to a single non-linear equation in the rectangle S. The region in which 
the solution of this equation is positive will be the contact region [6]. 

We will assume that a bounded region So = {M : g(M) > 0} exists such that f2 C S0 C S. We will 
introduce the notation 

w(M) = dp[q(M)], q(M) = H[w(M)],  ~,, = (2riO) q (2.4) 

and the (non-linear) operators 

I H [ v ( M ) ] ,  
~ v ( M )  := [0 ,  

Iv (M) ,  v ( M ) > 0  v(M) > 0 ~Zv(M) := (2.5) 
v(M) <_ O' [0,  v(M) < 0 

We will rewrite system (2.1) using formulae (2.4) and (2.5) in the equivalent form 

)~ , fK , (M,  N ) ~ w ( N ) d S  N = g(M) A w(M) > O, M w ( m )  + f~ 

S 

)~ , IK , (M,  N)g£w(N)dS u > g(M) A w(M) = O, M • (s\~) 
S 

Consider the Hammerstein integral equation 

1)(M) + ~ , , IK, (M,  N)g£1)(N)dS N = g(M), M • 
S 

Equation (2.7) can also be written in operator form 

I ) + ) V , ~ )  = g 

(2.6) 

(2.7) 

(2.8) 
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where x) = v(M), g = g(M) and ~ is an integral operator of the form 

Y~v := IK,(M, N)v(N)dS N (2.9) 

S 

We will further assume that g(M) e q~(S), where qg(S) is a Banach space of functions continuous in 
the rectangle S. We will seek solutions of system (2.1) and Eq. (2.8) in the same space. 

Theorem 1. If a9, = x),(M) ~ ~(S) is a solution of Eq. (2.8), then w = Aag,, f~ = {M: x),(M) > 0} 
is a solution of system (2.6), and ~2 ¢ ~ when So ¢ O; conversely, if w = w(M) E cg(S) satisfies system 
(2.6), then 

1), = g - ~,,~Y~w, M ~ S (2.10) 

is a solution of Eq. (2.8). 

Proof. We will first show that f2 ;e 0 if So ¢ 0 .  Assume the opposite. Then the inequalityg ~< 0 follows 
from Eq. (2.8), which contradicts the existence of So ;e ~.  We have used the first definition of (2.5) here. 

Suppose v ,  is the solution of Eq. (2.8). Note that ~ v ,  = 7~w, where w = 9_a~, (see formula (2.5)). 
When M E f~ we have w = x), > 0 and w + )v ,7~w = g. If M e (S\~), then v ,  = g - ~,,~£~x), < 0, 
)~ ,7~w > g, w = 0 and this proves the direct assertion of the theorem. 

Now suppose w = w(M) is a solution of system (2.6). For M E f~ the equality v ,  = w follows from 
the first equation of (2.6) and from relation (2.10). If M e (S\f2), we have ~), = g - ) v , ~ w  < 0, whence 
we obtain ~ a ,  = 3~w in the rectangle S. We can now rewrite formula (2.10) in the form 

1), = g - ~ , , ~ u , ,  M ~  S (2.11) 

i.e. u ,  is a solution of Eq. (2.8). 

Lemma 1. Being non-selfconjugate, the integral operator g£ (2.9) is strictly positive in z2(s) ,  i.e. 

(7£q, q)~e2(s) > 0 (2.12) 

where q ¢ 0. 

Proof. From formulae (1.5) we have 

2 ~ L1 ( ~ + ~2)cos (O~t)cos(f~z)dad~ - 
K(t,~;) = ~.1030 ~ 2  

~ 2 2 
2 a L 2 ( ~ )  

- e - I [  o o sin(ott)cos(~x)dotd~ 
O0 

We will put 

Iq(x,  y)cos(otx)cos(~y)dSxy = Cc(a, [J) 
S 

Iq(x,  y)sin(otx)cos(fJy)dSxy = Cs(Ot, ~) 
S 

fq(x ,  y)cos(otx)sin(~y)dSxy = Sc(Ot, f3) 
S 

Iq(x,  y)sin(otx)sin(fJy)dSxy = Ss(Ot , fJ) 
S 

Then, taking into account the fact that 

2 .2 1321[Cs(~' 13)c~(a, 13/- cAa, f~)Cs(~, f~) + 
o a + p  
+ Ss(a, [5)Sc(a, ~5)-Sc(a, ~)Ss(a, ~)]dad~ = 0 

(2.13) 

(2.14) 
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we obtain 

(~{q, q)~e2(s) = 

- 2Tr L'('f~2 +-~2)[C2(0~ ~)+ C2(o~, ~)+ S~(a, [~)+ S~(o~, ~)]dad~ > 0 (2.15) 
1[JJ ~ c , 

00 41 +p 

with q(x,y) ~ O, since the function Ll(u) is positive when u ~ (0, oo) and v E [0, 1/2] for both contact problems 
A and B. 

Theorem 2. If Eq. (2.8) has a solution in %(S), it is unique. 

Proof. Suppose we have two solutions: 131 and 132 where 131 ~ 132. Subtracting Eq. (2.8) with 13 = 131 
from the same equation with 13 = 132, we obtain 

d o + ~,,~{d = 0; do --'-- 1 ) 2  - -  1)1, d = ~V 2 - ~1)1 (2.16) 

We multiply Eq. (2.16) by d and integrate the result over the rectangle S. We obtain the relation 

(d o, d)y2(s) + (~..~£d, d)ae2(s ) = 0 

the second term in which is positive when d ~ 0, as result of Lemma 1, while the first term is also positive, 
since the inequality ~fv2(M) ~> ~13~(M) follows from the inequality v2(M') > Vl(M), since ~ is a 
monotonic operator. Consequently, d = 0, whence we have do = 0 (see Eq. (2.16)). 

Equation (2.8) can also be written in the form 

o = ORv; °1/,o := g -  ~,,~{~v (2.17) 

In order to prove that a solution of Eq. (2.8) or (2.17) exists using Shauder's principle [13], it is 
sufficient to show that the operator °R, completely continuous in ~(S), transfers a certain convex set 
of the Banach space <g(S) into a compact subset of this set. This has been shown (see [6], Note 5) for 
the case of the contact problem for a half-space (h ~ +~) ,  ignoring friction forces and using the 
monotonicity of the operator ~{ (2.9), guaranteed by the positiveness of its kernel K,  = 1/R (2.2) in 
the rectangle S. However, the positivity of K,  and the monotonicity of ~{, as the following two examples 
show, in the case of a layer is only preserved for fairly large values of h/b for fairly small values of g. 
Note that the friction coefficient bt for metal surfaces usually satisfies the condition Ibt I ~< 0.2. 

Example 1. Consider the axisymmetric problems A0 and B0 for a layer loaded with a concentrated 
forcep at the point x = y = 0, z = h. The boundary conditions at z = 0 are the same as for problems 
A and B respectively (see formulae (1.3)). For the dimensionless normal displacement 

u(p) = -uz(x ,y,h)2rtOh, P = h' r = ,fx-x 2+y2 
P 

using formulae (1.4) and (.1.5) with e = 0 and the first formula of (1.11), we obtain the expression 

l + i [ L ( t )  1]Jo(tp)dt ' L(t) 1 
~ N 

u(p) = 9 N / 

0 

The function La(u) is defined by the first formula of (1.6) or (1.7). Clearly the kernel K.  for contact 
problems A and B (without friction) will be positive for those values of R for which the corresponding 
function u(R/h) is positive. The first term 1/9 in formula (2.18) is the displacement for an elastic half- 
space. The functions u(p) for certain 9 with v = 0.3 are presented below: 

p 0.5 1 1.24 1.52 2 

u(p)  0.765 0.0583 0 -0.0161 -0.0107 (Problem A0) 
u(p)  0.924 0.129 0.0388 0 -0.0106 (Problem B0) 

It can be seen that the kernel K,  in Eq. (2.8) for both problems with bt = 0 and v = 0.3 will be negative, 
for example, when R = 2h. The surface of the layer is deformed both in the positive and the negative 
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directions of the z axis. This effect is due to the influence of the bottom z = 0 of the layer of finite 
thickness. 

Example 2. For the limiting case h ~ ~ ,  corresponding to an elastic half-space, the kernel K,  (2.2) 
takes the form 

1 
K , ( M ,  N) = ~ - e R2 (2.19) 

The function K,  (2.19) is positive in the rectangle S if l el < 1. When v = 0.3 the latter condition 
takes the form ]g[ < 3.5. 

L e m m a  2. Suppose the kernel K,  (M, N) is positive when M, N ~ S. Then the operator (2.17) maps 
the set B = {)~: oRg ~< Z ~< g} C ~(S) into itself, and a solution v ,  ~ B of Eq. (2.17) or (2.8) exists. 

Proof. It is clear that °Rg < g in S (g ~ 0). Suppose O~g ~< Z ~< g. Then, at any point M 

Z = t U g + ( l - t ) g ,  t = t (M)~ [0; 1] 

whence 

The double inequality 

)~ = g - t~ , ,~£~g ,  °R)~ = g -  ) ~ , ~ ( ~ ( g -  t ) ~ , % ~ g )  

°Rg -< ~)~ -< g (2.20) 

can be rewritten in the form of an inequality 

) ~ , ~ g  > ) ~ , ~ ( g  - t)~,~gf g) >_ 0 

which is satisfied in view of the monotonicity of the operator ~ and ~, since K, > 0. Consequently, the double 
inequality (2.20) is also satisfied. Equation (2.17) or (2.8) has a solution by virtue of Shauder's principle. 

For both contact problems A and B the condition K ,  > 0 in the region S is satisfied, for example, 
when h/b > 2.3 and g -- 0. If the function K,  changes sign in S, the existence of a solution of Eq. (2.17) 
can be established using the following lemma. 

L e m m a  3. Suppose the functions belong g to the open sphere B o C ~(S) of radius P with centre 
11 g 11 < 9. Suppose T is the boundary of B 0. Then oRT C B 0 for fairly small values of )~,, and Eq. (2.17) 
or (2.8) has the solution t), ~ Bp. 

To prove this it is sufficient to use another formulation of Shauder's principle [14] and the fact that 
oR is a completely continuous operator. 

Further, for the displacement of the roughnesses we will use the power law [2] 

• [q(M)] -- Aq~(M)  (0<13<1) 

and we replace the last formula of (2.4) by 

L ,  = (2rt0AV) -1 (7 = 1/13> 1) (2.21) 

Then, we must take as the function H[v(M)] in the first formula of (2.5) 

H[v(M)] = v'~(M) (2.22) 

Smallness of the parameter )~, in formulating Lemma 3 can be achieved for fairly large values of the 
parameter A, characterizing the roughness with which the elastic surface of the layer is processed. 

Equation (2.17) will be solved using successive approximations. We will investigate the convergence 
of this process using the Lipschitz condition for the non-linear operator [15], by estimating the constant 
in the Lipschitz condition using the Frechet derivative. 

L e m m a  4. The non-linear operator oR in any dosed sphere B o C ~(S) of radius p satisfies the Lipschitz 
condition with constant q0 = )~, II  clI C -1- 
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Proof. We can regard the function H (2.22) as a non-linear operator, defined on non-negative functions with 
Frechet derivative H'(v)h = yu r-lh. It is obvious that ~ = HA. The operator H (2.22) satisfies the Lipschitz condition 
on a set of non-negative bounded functions )~ E ~(S): 0 <~ Z ~< 9} with constant ql = 79 r-1. We further have 

~. ,  fJ~£11ql l ieu  - ~v l l  ~ ~ ,  II~tlq~ Ilu - vii = qoltU - vii (2.23) 

for any u, v c B O. 

Theorem 3. Suppose  the ope ra to r  OR maps  the closed sphere  B o C ~(S)  of  radius P into itself and 
let us assume that  q0 = ~ , l l ~ l l ~ f  -1 < 1. Then,  for any initial e l ement  v0 E Bo, successive 
approximat ions  

"On = OR"On- 1' n = 1, 2 . . . .  (2.24) 

converge to a unique solution (by T h e o r e m  2) of  Eq. (2.17). 

Proof. The  ope ra to r  °R is compress ive  by L e m m a  4. The  rest repea ts  the p roo f  of  T h e o r e m s  1.1 and 
1.2 of  [15]. 

The  constant  q0 in the Lipschitz condit ion depends  on the p a r a m e t e r  £ ,  (2.21),)~ and p, as well as 
on the no rm of the l inear ope ra to r  ~ .  The  smaller  the n o r m  [[g 1[, the less the value of p that  can be 
taken for the same large values of  A. 

Example 3. The  no rm 1[~£[[ can easily be  calculated for the limiting case of  a half-space,  h/b ~ ~o, 
for  which 

s 

by formula  (2.19). Suppose  lel < 1; then the kernel  of  the ope ra to r  (2.25) is positive in the region S, 
and consequent ly  

= max - - e - -  dS (2.26) ll~ll ( x , y )  e s R R 2 ~n 
s 

This integral  is easily evaluated using fo rmulae  1.6.8.14 and 1.6.7.3 of  [16] 

F ( s ) : : - I l n ( s +  s~+ l ) d s :  ln(s+ s~-++ l )+ s 1+  sZff-~+ls2 

G(s, a) := I ln ( s2  + aZ)ds = s ln ( s  2 + a 2) - 2s + 2aarctg s 
a 

(2.27) 

Finally we obtain 

I1~01 = m a x  ( g  1 - eN2) ( 2 . 2 8 )  
(x ,y )  e S 

where  

N, = N l +N;, N;  = (b+_y) F +F_b+-Y__ ( )l 
~,a + x j j  

+ + 
N 2 = N 2 + N  ~, N 2 = _+ [ G ( b - y , a + x ) + G ( b + y , a + x ) ]  

W h e n  there  is no friction, g = e = 0, a m a x i m u m  is reached  in ~_2.28) w h e n x  = y = 0, giving 11~£ II = 
4bF(b/a). Hence ,  in part icular,  we obtain  that  I17~ II = 8bln(1 + ~/2) ~- 7.05b when  a = b and II ~11 = 2.64b 
when  a = 0.2b. W h e n  there  is friction, e ¢ 0, a m a x i m u m  is reached  in (2.28) at the point  (Xm, 0), and 
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the value o f x  m is found from the transcendental equation 

ln(x_ + ~x_2+ 1) + ln(x+ + d~x2. + 1) + e(arctgx_- arctgx+) = 0 

where we have put 

b b 
X_ ~ ~ ,  x + = - -  

x - a  x + a  

In particular, when a = b, g = 0.2 and v = 0.3 we obtainxm = - 0.06b and II = 7.06b. 

3. N U M E R I C A L  ANALYSIS 

Suppose the base of the punch has the form of an elliptical paraboloid 

f ( x , y )  = x 2 / ( 2 R 1 ) + y 2 / ( 2 R 2 ) ,  R I < _ R  2 

We will introduce the following dimensionless quantities 

x y h 5 a b 
x ,  = ~, y ,  = ~, ) ~ = ~ ,  ~5, = ~ ,  e =  ~, A 0 =  ~-~1, 

A,  A(2rt0) 13 p ,  P q(x ,  y)  
= -- 2 '  q , ( x , , y , )  - 

b ' 2~0b 2re0 

2 
g , ( x , ,  y , )  = 5 ,  - AoX2, - BoY * 

b 
B 0 - 2R 2 

(3.1) 

etc. In the notation (3.1) the regions S and f2 are also changed. The asterisks will henceforth be omitted. 
The parameter ~. represents the relative thickness of the layer. Instead of (2.17) we obtain a dimensionless 
non-linear equation of the form 

o = g - a -2 '~ '~ l )  (3.2) 

Equation (3.2) was solved by the method of successive approximations, which converges for fairly 
large values of A (depending on IIg II, I1~£ II and 7). 

The calculation were carried out for problemA with v = 0.3 and 13 = 0.4 (this value of 13 is borrowed 
from [2], whereA - 1 is also taken). Values of P as a function of )~ for different values of A (the smaller 
the value of A the better the surface of the layer is processed) for the case 

5 = 0.05, A 0 = 0.2, B 0 = 0.05, ~ = 0.5, V~tE [0,0.2] (3.3) 

are given below: 

)~ 2.5 2 1.5 1 0.5 0.25 

P × 103 0.405 0.407 0.409 0.413 0.421 0.429 (for A = 0.8) 
P × 103 1.13 1.14 1.16 1.19 1.26 1.33 (for A = 0.5) 

The fact that P is independent (to the first few significant digits) of the friction coefficient ~t (over 
this range of values of g) was also pointed out in [8] when investigating the contact problem for a half- 
space ignoring the roughness (14 = 0). 

When there is friction the contact pressure becomes asymmetrical, but its integral characteristic stays 
the same, which can be explained in the same way as before [8], by expanding the pressure in terms of 
the small parameter e (see the second formula of (1.5)). The force is independent of the sign of g, and 
hence the effective friction will be described by small terms of the order of e2. For a specified accuracy 
the number of iterations falls as ~ decreases, which is due to the reduction in the norm ][~ ]]. In 
Fig. 2(a) we show graphs of P(8) for A = 0.8 (the continuous curve) and A = 0.7 (the dashed curve), 
where ~, = 1, and the values of the remaining parameters are given by Eqs (3.3). For the same value 
of the force, the indentation is greater for a less ground surface, for which the value of A is greater. 
The contact area also increases asA increases, while the pressure at the centre of this region is reduced. 
This is shown in Fig. 2(b) for the case when 
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Fig. 2 

2~--~o, p = 0, P = 0.00199, A 0 = B 0 = 0.05 

when, in view of the axial symmetry, the pressure depends only on the radial coordinate r (this refers 
to b). The thin line corresponds to the exact solution of the problem forA = 0 [10] (8 = 0.0130 and 
the radius p of the region f~ is equal to 0.36), the dashed curve corresponds toA  =0.3 (8 = 0.0370 and 
9 = 0.82), while the thick curve corresponds t o A  = 0.5 (8 = 0.0500 and 9 = 0.96). 

The effect of the roughness, in the sense of the difference from the corresponding solution forA = 
0, increases particularly for contact areas whose characteristic dimensions considerably exceed the value 
of the indentation of the punch. 

This research was supported bythe Humboldt Fund (Germany) and the Russian Foundation for Basic 
Research (0.2-01-00346). 
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